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Expressions for the linear Burnett transport properties with transfer coefficients in the Mason-Monchik approximation are 
presented. Problems of sound propagation and the structure of a weak shock wave are solved using them. 0 2001 Elsevier Science 
Ltd. All rights reserved. 

The question of the significance of the effect of internal degrees of freedom of molecules on the Burnett 
transfer coefficients were formulated for the first time by McCoy and Dahler [l]; they derived formulae 
for these coefficients for classical models of molecules with rotational degree of freedom (rough sheres, 
loaded spheres and spherocylinders) and the problems indicated considered in the above abstract. 
However, these models have well-known drawbacks, and the quasi-classical approach is preferred 
[2, 31, by which expressions have been obtained for the Burnett transfer coefficients [4]. 

We emphasize that the results of this paper give, generally speaking, an upper limit of the effect of 
rotations of the molecules on the Burnett transfer coefficients: they are based on data [4] obtained for 
the case of simple exchanges of translational and internal energy of the molecules, and ignore relaxation 
of the rotations of the molecules. 

1. LINEAR TRANSPORT PROPERTIES 

Burnett’s transfer coefficients of a polyatomic gas can be expressed approximately [4] in terms of the 
shear viscosity 8 and bulk viscosity 5, the translational thermal conductivity h, and the internal thermal 
conductivity h,., and the coefficient cr. For example, we have for the coefficients of the linear terms of 
the stress tensor and of the heat flux vector 

52A, 5 

P 
4 =$h,, w2 = L (h, -oh,), 

P 
w* _ 3G2 -2p(I+o) 

(1.1) 

Here we have used the notation previously employed in [4], the pressurep = pRT, R = kB/m is the 
gas constant, kB is Boltzmann’s constant, m is the mass of the molecule and c, is the heat capacity due 
to the internal degrees of freedom at constant volume. It can be shown [2,3] that 

0 3k, 3(y-1) =-=- 
2C” s-3y 7 s (1.2) 

where y is the ratio of the specific heat capacities and 2 is the ratio of the rotational and translational 
relaxation times (semi-empirical Z(T) relations are known for different gases [3]). 

According to the Mason-Monchik approximation, the coefficient n is the same as for the corres- 
ponding monatomic gas, and at the same time]31 we have 
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(1.3) 

Here we have used formula (1.2) for o, and D is the self-diffusion coefficient of a monatomic gas. 
When 2 3 3 we have cp = 1 [3]. We will henceforth assume that cp = 1; then the effect of the rotations 
appears via y and Z. 

In the case of light exchanges 2 - 1. For fixed Z we obtain the case of a monatomic gas formally by 
assuming c, = 0 (cr = -), in which case < = 0, A; = 1, h: = 0. We have monatomic values of n and h 
in the case of slow exchanges (Z 9 l), when the temperature is determined by the kinetic energy of 
the molecules, there is no bulk viscosity, and the populations of the rotational levels satisfy a system 
of relaxation equations. 

Using relations (1.1) - (1.3) and the formulae obtained previously in [4], for the one-dimensional 
linearized flows considered below we find the following expressions for the stress and heat flux 

B=1+3C,l+~Z(y-lf(5-3y), h=h;+h; 
4rl 

(1.6) 

I50 
Q, =- 

7(1 + a) 
L;* ++* -;A; -$(f?-I# -cg) (1.7) 

Q2 =I+2(1+a)(B-I)*, Q~=k;+;(+-a?#-1) (1.8) 

Terms with first derivatives correspond to the Navier-Stokes approximation and terms with second 
derivatives correspond to Burnett’s approximation, where u is the gas velocity. In the case of a monatomic 
gasB=A=Q,,,= 1 (m = 1,2,3). The effect of the internal degrees of freedom of the molecules on 
the transfer coefficients manifests itself via the dependence of B, A and Q, on y and Z. The final aim 
is to establish a measure of this effect on Q, and on the solution of problems (i.e. how the solutions 
depend on the deviations of Q, from unity). 

Henceforth we will assume the rotations are completely excited, so that y = const. The dependence 
of B, A and Q, on T is then expressed in terms of the function Z(7). 

The data shown in Table 1 represent the transfer coefficients as a function of Z and y. For nitrogen 

Table 1 

z 

3 

6 

IO 

20 

Y 

K 
% 
K 
% 
K 
K 
K 
$5 

B A 

I .28 1.31 

1.29 I .41 

1.56 1.32 

I .59 I .49 

1.94 I .33 

1.98 I.50 

2.88 1.34 

2.96 1.52 

QI Q2 Q3 

0.315 1.40 1.10 

0.246 1.35 1.05 

-0.034 2.60 1.44 

-0.116 2.39 I .40 

-0.520 5.44 I .88 

-0.619 4.86 1.86 

-1.76 18.76 2.99 

-1.91 16.42 3.02 
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we have [3] 2 = 3,6 and 10 at T = 200,400 and 1000 K; the value 2 = 20 is close to the limit (we recall 
that a large spread of the existing data is characteristic for the function Z(T)). 

The value B increases linearly as Z increases, due to the increase in the effect of the bulk viscosity 
(since 2 -s/q), while A tends to a value given by the modified Eucken formula [2,3]. Rotations of the 
molecules have a considerably greater effect on Burnett’s transfer coefficients Q, than the on the 
Navier-Stokes coefficients. The coefficient QI first changes sign as 2 increases, and then 1 Q, 1 increases 
approximately linearly with respect to 2, and also Q3. Qz increases particularly strongly in view of its 
quadratic dependence on 2. 

The effect of y on 2 is much less (with the exception of Q,). 

2. SOUND PROPAGATION 

We will consider the problem of the propagation of forced plane ultrasonic oscillations with a fixed 
frequency o along the x > 0 axis in a polyatomic gas. For perturbations of the gas-dynamic variables 
we have 

where po, TO andpo are the mass density, temperature and pressure in the unperturbed gas and c is the 
velocity of sound for a Knudsen number K,,= 0. We will assume 

(2.2) 
PO 

The Knudsen number K,, is determined, as in a monatomic gas [5], for a clear demonstration of the 
effect of the internal degrees of freedom of the molecules. We will write the linearized continuity and 
energy equations in the variables (2.1) and (2.2) 

a6p au I a6T au -=-- 1 34 --+-+_-_= 
at ax’ y-1 at ax po ax 

o 
(2.3) 

Hence we have 

Using Eq. (2.4) and the equation of state, we can reduce the momentum equation to the form 

y a2u +__-+I&=() a*m azu -- 
c* at* axat ax2 po axat 

(2.4) 

(2.5) 

We will seek a solution in the form 

(6p, 6p, 6T, u) - exp(-kx’ + t*) (2.6) 

k=K+x+jP, X*=EX, t’ = iw 
C 

Here K is the wave number, t is the time, i is the square root of -1, cx is the absorption coefficient 
and p is the dispersion coefficient (inversely proportional to the phase velocity). 

We substitute (1.4) and (1.5) into Eqs (2.3) and (2.5), e 1 iminating the derivative of 6p, taking (2.4) 
into account, and we introduce the new variables 

v = Lexp(-t*). 8 = 6Texp(-t’) 
C 
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-;=I, ()(~Ld”o, 1 
a 

n= ,‘.., 

5 
at G!x*n 

Finally, the search for a solution in the form (2.6) leads to the following system of equations 

(2.7) 
$1) 
3 

-L Kn2 Q,~u’~’ 
6~ 

+2i,-~KnA,8’2’=0, S=3Q3,-2Q,, 
3(Y-1) 2Y 

We obtain Ba, & and Q,a using relations (1.3) and (1.6) - (1.8), by replacing Z by Za = Z( To). From 
system (2.7) we have the dispersion equation 

k6 y-l Kn3(7 Kn Q,$ - 30ihoQ,o) + 
6~~ 

+k 4$$-{Kn[3t~ - 1)03&, -7Q,o -20Bo~o)-~6Q20yl+Wy-I)~ol+ 

+k2-&iKn[45(y-l)h,+16$]+12y)+l=O (2.8) 

Henceforth we will only consider the sonic mode [5]. When Kn 4 1 it follows from (2.8) that 

a = a, Kn+ O(Kn3), p = I -p2 Kn2+ 0(Kn4), p2 = x, +x2 (2.9) 

Expansion (2.9) was discussed in [5] in the case of a monatomic gas. 
The quantity ai is given by the Navier-Stokes approximation 

(2.10) 

At the same time both the Navier-Stokes approximation (xi) and the Burnett approximation (x2) make 
a contribution to pz 

2B, 25Ba 
+-Ah,(y-1)2 + xI=3y2 4y3 =&Y-1)3(3Y-7) 

x2=y-l 7 
Y2 ( 

,Q,o -Qd+~ 
i 

Formulae (2.9) - (2.11) are the asymptotic solution (K, + 0) of the problem 
approximation, and higher approximations of the Chapman-Enskog method make a 
the following terms of the series. 

(2.11) 

in the Burnett 
contribution to 

In Tables 2 and 3 we show some results of calculations for this and the following sections. Case 9” 
corresponds to a monatomic gas (y = 5/3). Naturally, for the same y and Z0 = Z, the values of the transfer 
coefficients Bo, A0 and Q,a are equal to the values of the coefficients B, A and Q,,, given in Table 1. 

The quantities B2 and xl/xz represent the dispersion and comparative contribution of the 
Navier-Stokes and Burnett approximations. The ratio xI/xz decreases as Z increases, i.e. the relative 
contribution of the Burnett approximation to the dispersion coefficient increases. 

To analyse the significance of the difference of the Burnett transfer coefficients Q,a from unity for 
different K,,,, Z and y. Table 3 gives the following quantities 

A,=%, P 

Ap=ET 
a, = a(y, Bo9 Ao? Q,o = I), P. = P<yv Bo. A,, Q,,,, = 1) 

a, 
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Jvi 

I0 

2" 

3" 

4O 

5O 

6" 

7" 

8" 

9" 
- 

3 

6 

10 

20 

3 

6 

IO 

20 

GI G2 G3 

1.53 2.07 -239 25 449 

2.38 1.54 -309 34 723 

4.20 0.985 -424 49 1367 

12.10 0.511 -818 96 4378 

1.57 2.04 -211 19 363 

2.42 1.65 -283 26 573 

4.18 I.12 -400 38 1066 

11.80 0.609 -806 77 3370 

1.08 1.90 -353 51 756 

Table 2 

G AC 

235 1.22 

448 3.39 

992 30.4 

3656 -11.6 

171 I.16 

316 3.85 

704 -30.7 

2641 -6.78 

454 - 

Table 3 

M Kn=O.l 0.3 0.5 0.7 0.9 I.1 I.3 

I" 
2" 
3" 
4" 
5" 
6' 979 
7" & 
8" 792 

996 
976 
930 
774 
997 

980 968 
889 830 
739 641 
470 384 
983 972 
901 850 
764 675 
505 420 

I" 1000 1000 
2" 996 989 
3" 987 967 
4" 955 908 
5" 1000 1000 
6" 996 991 
7O 989 973 
8" 960 927 

AB 

1006 
997 
973 
911 
1006 
1000 
984 
940 

I0 78 186 
2" 90 209 
3" 106 235 
4" I44 283 
5" 79 186 
6" 92 212 
7" II0 240 
8" I51 290 

a; IO3 

237 260 
259 279 
281 295 
314 315 
236 258 
261 279 
285 298 
319 319 

p, 'IO3 

lo 986 908 
2" 982 888 
3" 976 862 
4" 960 795 
5" 986 906 
6" 981 885 
7O 975 856 
8" I 956 1 784 

I03 

957 
789 
587 
350 
961 
814 
625 
387 

I03 

1015 1028 1044 1063 
1012 1028 loQ5 1062 
985 998 1011 1023 
923 936 949 962 
1014 1025 1039 1055 
1015 1032 1050 1067 
loo0 1015 1030 1044 
958 976 992 1007 

271 276 279 
285 286 284 
296 292 286 
308 297 286 
268 272 275 
285 286 283 
298 294 287 
310 298 287 

L 

699 
657 
610 
518 
696 
652 
602 
503 

945 930 912 
755 727 704 
553 532 517 
335 329 329 
949 933 914 
785 760 739 
594 573 560 
372 367 369 

651 
607 
560 
471 
650 
603 
552 

610 
565 
520 
435 
610 
561 
512 

456 / 420 
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Here a* and l3* are the solutions of Eq. (2.8) for Q,s = 1 (but B0 # 1, As f 1, y + 5/3). (Detailed 
data are given in [6] for a monatomic gas.) 

The differences of the quantities Aa and As from unity represent the degree of influence of changes 
in the Burnett coefficients Q,,,O, due to rotation of the molecules, on the solution of the problem of 
sound propagation. This influence increases as K,, and 2 increase, particularly for the absorption 
coefficient a. 

3. STRUCTURE OF A WEAK SHOCK WAVE 

The conservation equations take the form 

pu=c,, p=c, 

p+pu2 +z= c,, 

RT 

(3.1) 

where C,,, (m = 1,2,3) are integration constants. Introducing the variables 

RT, =,=L, q. c2q Cl 

c2 c2 

eliminating p andp using the first two equations of (3.1) and subtracting the momentum equation from 
the energy equation, we obtain instead of the last two equations of (3.1) 

Y+l Cl c3 -T,+u,+u,z,+2q*=c, c=- 
Y-1 c,2 

(3.2) 

We will use a method similar to that employed earlier in [7] for a mixture of monatomic gases, choosing 
as the small parameter 

&=u;-uu: = 2y(M2-1) _ 

(y+l)(yM2+l)’ ’ 
= u(x = -cm-), u+ = u(x = -) (3.3) 

where M is the Mach number in front of the shock wave (x = --). Multiplying both sides of the first 
equation of (3.3) by (y + l)/(y - l), we obtain a parameter, the effectiveness of which was demonstrated 
in [8]. The advantage of this kind of parameters compared with the parameter [l] y = M - 1 6 1 is the 
fact that they are finite as M increases and accelerate the convergence of the series with respect to the 
small parameter. The parameter C is expressed in terms of E by the formula 

C=y2_-_ y+l E2 

Y2 -I y-l 4 

We will introduce the following variables which depend on w and 2) and are independent of 5 

(3.4) 

w(O)=O, w-= 1, w+=-1, i9-=-1, *+= 1 

The quantity rle is defined below (see (3.6)). We can now write the system of equations (3.2) in the 
form 

&(w+lY)+E 2 Y+l tw2 

2(Y - I) 
-1)+[2y+(y+1)ew1~=0 

Y-I 
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&(w+6)+& 2 y+l @2 0. 

2(Y -1) 
-1)+[2y+(y+l)Ewl- =o 

Y-l (3.5) 

We will seek a solution of system (3.5) in the form 

w= Wa+&W, +..., ?9=fi,+&fi,+... 

so that 

r* = Z2E2 + rTgE3, 4, - 42E2 + 43E3 

In the Burnett approximation we need to take into account perturbations of the Navier-Stokes transfer 
coefficients. Here (see (1.4)-(1.6)) as in the well-known approach [8], we have 

rlB = r\o Bo + O-P), - 
i 

y-1 El9 1 WlB) 
2(Y + 1) 

o I . W), = -- 

q aT, T,.=T., 

G, =#(I++$ Kc,=& 

(3.6) 

and similarly for VA. Here T- is the gas temperature in front of the shock wave. 
Taking relations (3.4) and (3.6) into account, we obtain (the prime denotes a derivative with respect 

to 5) 

r2 = -$Bow& 
15 y-l 

q2 =-TAO- 
2(Y + 1) 

%I 

Using relations (3.7) in the Navier-Stokes approximation from system (3.5) we obtain 

fio=-wo, w;-I=bw& 1 
and, consequently 

w. = -th (5/b) 

Taking relations (1.4) (1.5), (3.2) (3.4), (3.6) and (3.8) into account we have 

(3.7) 

(3.8) 

(3.9) 

(y-*)b 2 (qB),- +-ye20 -(Y -1)&o 
6(y+l) 3 1 

(3.10) 

;@,A), gb+,yQ,, 

In the next approximation 

19, =-w, +bdw;,, d= +Y& -(Y -+o 1 (3.11) 

2wow1+ (3.12) 

Using relations (3.7), (3.10) and (3.11) we reduce Eq. (3.12) to the form 



460 V S. Galkin and V. A. Zharov 

w;b - 2wcw, = 
G 

9(y + 1)3 wl 
(3.13) 

Using expression (3.9) we will write the solution of Eq. (3.13) in the form 

w, =FG 
InchX -; F= 

2 5 
ch2 X 9(y + 1)3b2 ’ x=b 

and using relations (3.9), (3.11) and (3.14) we obtain 

6, =- ---&(d + FG In ch X) 

(3.14) 

(3.15) 

In (3.13)-(3.15) 

G=G, +G2+G3 

G, = -*{~~~gy-(y-l~3~+~y-l~3(~A~-~~} 

(3.16) 

G2 = 12y(y - 1P 
[ 

Wh- + $Y - lhlA)r 
I 

G3 = 3y(y+ I)[I6@20 + 3(y- 1)(7010 + g&30)1 

The quantity Gi is found by the approximate Navier-Stokes approximation with unperturbed values 
of the transfer coefficients, G2 is determined by the contribution of the perturbations of these coefficients 
and G3 is determined by the Burnett approximation. 

Using solutions (3.8) (3.9) and (3.14)-(3.16) we obtain the asymmetry parameters of the profiles 
of the density Qp and the temperature Q, in the shock wave. By definition 

where the centre of the density profile X.,, is the root of the equation W,(X) = i/2. Formulae for the 
asymmetry parameter Qr are hence obtained by replacing p by T. As in the well-known approach [7] 
we obtain 

xp =E%+o(E2), x, =Ed+O(&2) (3.17) 

after which we obtain 

QP = Qr = 1 - &FG( l/hi 2 - 1) + O(E~) (3.18) 

The coefficients d, F and G are found from (3.11) (3.14) and (3.16). 
Note that the formulae in [7], like (3.6) (3.13), (3.14), (3.16) and (3.17) need refinement. 
To analyse Gi, Gz and G3 we will consider the linear relationship between the transfer coefficients 

and the temperature, when (r$?)r = B0 and (r)A)r = I\o. For actual intermolecular potentials these 
relations are less pronounced and G2 will be even less. 

Characteristic values of these quantities are given in Table 1, where 

A, = 
WY, 4,, Ao* Q,,,,) 

G(y, B,, Ao, Q,,,o = 1) 

represents the contribution to G of changes in the Burnett transfer coefficients due to rotations of the 
molecules (like Aa and As in Section 2). 
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The solution changes qualitatively if the Burnett terms are taken into account: in the Navier-Stokes 
approximation G = G, + G? < 0, but in the Burnett approximation G = Gt + G2 = G3 > 0. This is 
of basic importance for the asymmetry parameters (3.18). Here the Burnett equations give the correct 
result, unlike the Navier-Stokes equations. Experimental and numerical investigations have shown that 
when M c 1.8 the parameter QP is less than unity. It follows from the Navier-Stokes equations that 
for any M we have QP > 1 [7,9]. 

In this connection, it is of considerable importance to take into account the effect of rotations on 
the Burnett transfer coefficients. The denominator in the expression for AG for small 2 is positive, it 
passes through zero as Z increases and then becomes negative. This is explained by the “behaviour” 
of Ao in Table 2. 

4. CONCLUSION 

The effect of rotations of the molecules on the Burnett transfer coefficients is much greater than the 
effect on the Navier-Stokes transfer coefficients. It increases with temperature and is determined by 
the increase in the significance of the bulk viscosity. The part played by changes in the Burnett transfer 
coefficients, due to rotations of the molecules, in the problem of sound propagation increases when 
the Knudsen number and the temperature increase, and is much greater for the absorption coefficient 
than for the dispersion coefficient. The dependence of the Burnett transfer coefficients on the 
polyatomicity considerably changes the asymmetry parameters of the density and temperature profiles 
in a shock wave (if this relationship is not taken into account, the results will be qualitatively incorrect). 

This research we supported financially by the Russian Foundation for Basic Research (99-01-00409) 
and the “State Support of the Leading Scientific Schools” program (00-15-96069). 
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